

# COLÉGIO TÉCNICO DE CAMPINAS Universidade Estadual de Campinas



# CATÁLOGO DOS CURSOS TÉCNICOS - COTUCA UNICAMP 2026

# Curso 65 - Automação Industrial

Curso Técnico em Mecânica concomitância externa (Presencial)

Eixo Tecnológico: Controle e Processos Industriais

Turno: Noturno

# O Profissional:

O curso técnico em Automação Industrial visa preparar profissionais para atuar no desenvolvimento, implementação e manutenção de sistemas de controle e automação utilizados nos processos produtivos industriais. A formação abrange a integração de diversas tecnologias como elétrica, eletrônica, mecânica, informática e controle, com o objetivo de otimizar a produção, aumentar a eficiência, garantir a qualidade e a segurança nas operações industriais, considerando as normas técnicas e os requisitos ambientais. O curso busca capacitar o aluno a criar soluções para o acionamento de dispositivos e para a medição e controle de variáveis em processos industriais.

# Integralização:

Para forma-se como Técnico neste curso, o aluno deverá concluir as 1.305 horas de disciplinas do currículo, que poderão ser integralizadas em 2 anos, conforme a proposta do Projeto Pedagógico do Curso para o cumprimento do currículo pleno. O Estágio de 500 horas não é obrigatório. O prazo máximo de integralização é de 4 anos.

# <u>Currículo</u>:

| Curso: <b>Técnico em Aut</b>                   | Código: <b>65</b>                           |                              |                |  |  |
|------------------------------------------------|---------------------------------------------|------------------------------|----------------|--|--|
| Legislação: Catálogo Nacional de Cursos (2024) |                                             |                              |                |  |  |
| Autorização do curso:                          | Período: <b>Noturno</b>                     |                              |                |  |  |
| Carga Horária Mínima:                          | Carga Horária Total:                        | Total de semanas (semestre): | Tempo de aula: |  |  |
| 1.200 (F. Téc. Prof.)                          | Automação Industrial: 1.305 (F. Téc. Prof.) | 20                           | 45'            |  |  |
| Estágio Opcional                               | 500 horas (Estágio Opcional)                |                              |                |  |  |

|                               |     |                      |                                            |        |             | Aulas       | semana | is     |     | Aulas  | semestra | ais   |                      |
|-------------------------------|-----|----------------------|--------------------------------------------|--------|-------------|-------------|--------|--------|-----|--------|----------|-------|----------------------|
|                               | Se  | mestre               | Componente Curricular                      | Código | 1           | .º ano      | 2      | 2º ano | 1   | Lº ano | 2        | º ano | Total Horas<br>(60') |
|                               | _   |                      |                                            |        | 1º          | 2º          | 3º     | 4º     | 1º  | 2º     | 3ō       | 4º    | (50)                 |
|                               |     | æ                    | Lógica de Programação                      | AI100  | 02          |             |        |        | 40  |        |          |       | 30                   |
|                               |     | Eletrônica           | Eletricidade e Magnetismo                  | AI110  | 09<br>(6/3) |             |        |        | 180 |        |          |       | 135                  |
|                               | ı   | Eletr                | Técnicas Digitais e Microprocessadores I   | AI130  | 07<br>(4/3) |             |        |        | 140 |        |          |       | 105                  |
|                               | l l | em                   | Tecnologia Ambiental                       | AI120  | 02          |             |        |        | 40  |        |          |       | 30                   |
| _                             |     | mnı                  | Inglês Instrumental                        | AI140  | 02          |             |        |        | 40  |        |          |       | 30                   |
| iona                          |     | Núcleo Comum         | Eletrônica Básica                          | AI210  |             | 07<br>(4/3) |        |        |     | 140    |          |       | 105                  |
| fiss                          |     | cleo                 | Desenho Técnico                            | AI240  |             | 03          |        |        |     | 60     |          |       | 45                   |
| Pro                           | Ш   | Núc                  | Circuitos Elétricos                        | AI220  |             | 07<br>(4/3) |        |        |     | 140    |          |       | 105                  |
| Formação Técnica Profissional |     |                      | Técnicas Digitais e Microprocessadores II  | AI230  |             | 07<br>(4/3) |        |        |     | 140    |          |       | 105                  |
| O                             |     |                      | Linguagens de Programação                  | AI300  |             |             | 3      |        |     |        | 60       |       | 45                   |
| açâ                           |     |                      | Eletrônica Industrial                      | Al310  |             |             | 3      |        |     |        | 60       |       | 45                   |
| E                             |     | _                    | Instrumentação Industrial                  | AI320  |             |             | 5      |        |     |        | 100      |       | 75                   |
| •                             | Ш   | strie                | Sistemas de Automação                      | AI330  |             |             | 3      |        |     |        | 60       |       | 45                   |
|                               |     | inpu                 | Confiabilidade metrológica e Qualidade     | AI340  |             |             | 2      |        |     |        | 40       |       | 30                   |
|                               |     | lo Ir                | Acionamentos Elétricos                     | AI350  |             |             | 4      |        |     |        | 80       |       | 60                   |
|                               |     | Automação Industrial | Trabalho de Conclusão de Curso I           | AI360  |             |             | 2      |        |     |        | 40       |       | 30                   |
|                               |     | ton                  | Redes Industriais e Sistemas Supervisórios | AI400  |             |             |        | 3      |     |        |          | 60    | 45                   |
|                               |     | Αn.                  | Controladores Lógicos Programáveis         | AI410  |             |             |        | 4      |     |        |          | 80    | 60                   |
|                               | IV  |                      | Robótica Industrial                        | AI420  |             |             |        | 3      |     |        |          | 60    | 45                   |
|                               | 'V  |                      | Sistemas Hidráulicos e Pneumáticos         | AI430  |             |             |        | 4      |     |        |          | 80    | 60                   |
|                               |     |                      | Controle de Processos Industriais          | AI440  |             |             |        | 3      |     |        |          | 60    | 45                   |
|                               |     |                      | Trabalho de Conclusão de Curso II          | AI460  |             |             |        | 2      |     |        |          | 40    | 30                   |
|                               |     |                      | Total Carga Horária do Núcleo Comum        |        | 22          | 24          |        |        | 440 | 480    |          |       | 690 horas            |
|                               |     | Tot                  | tal Carga Horária de Automação Industrial  |        |             |             | 22     | 19     |     |        | 440      | 380   | 615 horas            |

Estágio Supervisionado (opcional) ES500: **500 horas** 

Total do Curso Automação Industrial: 1.305 horas

# **Disciplinas**:

| Componente Curricular: LÓGICA | Código: Al100                 | 1º semestre          |                    |  |
|-------------------------------|-------------------------------|----------------------|--------------------|--|
| Número de aulas semanais: 02  | Total de aulas semestrais: 40 | Semestre: 20 semanas | Tempo de aula: 45' |  |

#### Ementa:

Estudos de organização e construção de algoritmos em forma de programação de computadores.

# Bibliografia Básica:

CHAMPMAN, Stephen. *Programação em matlab para engenheiros*. 3. ed. São Paulo: Cengage Learning, 2016. MANZANO, João A. N. G. *Lógica estruturada para programação de computadores*. São Paulo: Editora Érica, 2016. VIEIRA, Cláudio; MORAIS, Vagner. *MATLAB*: curso completo; Lisboa: FCA, 2013.

# **Bibliografia Complementar:**

MATLAB. *MATLAB para inteligência artificial*. Disponível em: <a href="https://www.mathworks.com/">https://www.mathworks.com/</a>>. Acesso em 19 abr. 2023. SOUZA, Marco et al. *Algoritmos e lógica de programação*. 3. ed. São Paulo: Cengage Learning, 2019.

| Componente Curricular: ELETRICIDADE E MAGNETISMO |                                |                      | Código: Al110     | 1º semestre |
|--------------------------------------------------|--------------------------------|----------------------|-------------------|-------------|
| Número de aulas semanais: 09                     | Total de aulas semestrais: 180 | Semestre: 20 semanas | Tempo de aula: 45 | ,           |

# Ementa:

Estudo dos fenômenos, teorias e aplicações práticas de Eletrostática, Eletrodinâmica, Magnetismo e Eletromagnetismo.

# Bibliografia Básica:

BISCUOLA, Gualter J.; DOCA, Ricardo H; BOAS, Newton, V. *Tópicos de Física:* eletricidade, física moderna, análise dimensional. v. 3. 18. ed. São Paulo: Editora Saraiva, 2012.

# **Bibliografia Complementar:**

CAPUANO, Francisco G.; MARINO, Maria A. M. *Laboratório de eletricidade e eletrônica*: teoria e prática. 24. ed. São Paulo, Érica, 1997.

| Componente Curricular: TÉCNICAS DIGITAIS E MICROPROCESSADORES I |                                |                      | Código: Al130      | 1º semestre |
|-----------------------------------------------------------------|--------------------------------|----------------------|--------------------|-------------|
| Número de aulas semanais: 07                                    | Total de aulas semestrais: 140 | Semestre: 20 semanas | Tempo de aula: 45' |             |

# Ementa:

Estudo de Sistemas e subsistemas de circuitos de eletrônica digital - Sistemas Combinacionais e Sistemas Sequenciais.

# Bibliografia Básica:

FLOYD, Thomas. *Sistemas digitais:* fundamentos e aplicações. 9. ed. Porto Alegre: Bookman, 2007.

IDOETA, Ivan V.; CAPUANO, Francisco G. Elementos de eletrônica digital. 42. ed. São Paulo, Érica, 2018.

# **Bibliografia Complementar:**

Apostilas fornecidas pelo professor.

Simuladores de sistemas Digitais.

| Componente Curricular: TECN  | Código: Al120                 | 1º semestre          |                    |  |
|------------------------------|-------------------------------|----------------------|--------------------|--|
| Número de aulas semanais: 02 | Total de aulas semestrais: 40 | Semestre: 20 semanas | Tempo de aula: 45´ |  |

Estudo dos conceitos e fundamentos tecnológicos para a gestão ambiental nas empresas.

# Bibliografia Básica:

MANAHAN, Stanley E. Environmental Chemistry. 6 ed. CA-USA: Lewis Publishers, 1994.

(material traduzido fornecido aos alunos)

# **Bibliografia Complementar:**

RMAI. Revista Meio Ambiente e Indústria.

| Componente Curricular: INGL | Código: Al140                 | 1º semestre         |                    |  |
|-----------------------------|-------------------------------|---------------------|--------------------|--|
| Número de aulas semanais: 2 | Total de aulas semestrais: 40 | Semestre:20 semanas | Tempo de aula: 45' |  |

#### Ementa:

Estudo da Língua Inglesa e suas aplicações na leitura e compreensão de textos técnicos das áreas de Eletrônica.

# BibliografiaBásica:

MERRIAM AND WEBSTER ONLINE ENGLISH DICTIONARY. Dicionário em inglês online. Disponível em: <www.m-w.com>.

Acesso em: 12 ago. 2022.

SOUZA, Adriana G. F. et. al. Leitura em Língua Inglesa: uma abordagem instrumental. São Paulo: Disal, 2005.

# **Bibliografia Complementar:**

ANTCORGEN. Software para geração de corpus para estudo. Disponível em:

<a href="https://www.laurenceanthony.net/software/antcorgen/">https://www.laurenceanthony.net/software/antcorgen/</a>>. Acesso em: 12 ago. 2022.

ANTCONC. Software para análise de corpora. Disponível em: <a href="https://www.laurenceanthony.net/software/antconc/">https://www.laurenceanthony.net/software/antconc/</a>. Acesso em: 12 ago. 2022.

CIOCARI, Roberta M. Apostila de Inglês Instrumental. Rio Grande do Sul: 2011. Disponível em

<a href="http://tics.ifsul.edu.br/matriz/conteudo/disciplinas/\_pdf/ingles\_instrumental.pdf">http://tics.ifsul.edu.br/matriz/conteudo/disciplinas/\_pdf/ingles\_instrumental.pdf</a>. Acesso em:12 ago. 2022.

WEBCORPUS. Corpus para pesquisa linguística. Disponível em: <a href="https://webcorp.org.uk/live/">https://webcorp.org.uk/live/</a>. Acesso em: 12 ago. 2022.

| Componente Curricular: ELETI | Código: Al210                  | 2º semestre          |                    |  |
|------------------------------|--------------------------------|----------------------|--------------------|--|
| Número de aulas semanais: 07 | Total de aulas semestrais: 140 | Semestre: 20 semanas | Tempo de aula: 45′ |  |

# Ementa:

Estudo dos diodos semicondutores e Transistores de Junção Bipolar relativos a fontes de alimentação reguladas, circuitos de chaveamento e amplificadores de pequenos sinais.

# Bibliografia Básica:

MALVINO, Albert; BATES, David. Eletrônica. v.1. 8. ed. Porto Alegre: AMGH, 2016.

# **Bibliografia Complementar:**

BOYLESTAD, Robert L.; NASCHELSKY, Louis. *Dispositivos eletrônicos e teoria de circuitos*. 11. ed. São Paulo: Pearson Universidades, 2013.

CAPUANO, Francisco G.; MARINO, Maria A. M. *Laboratório de eletricidade e eletrônica*: teoria e prática. 24. ed. São Paulo, Érica, 1997.

| Componente Curricular: DESE  | Código: Al240                 | 2º semestre          |                    |  |
|------------------------------|-------------------------------|----------------------|--------------------|--|
| Número de aulas semanais: 03 | Total de aulas semestrais: 60 | Semestre: 20 semanas | Tempo de aula: 45′ |  |

Estudo das normas de desenho técnico e suas aplicações e da utilização de softwares de desenho para projetos de desenhos técnicos diversos.

# Bibliografia Básica:

LIMA, Cláudia C. Estudo Dirigido de Autocad 2006. São Paulo: Érica, 2006.

OLIVEIRA, Adriano de; BALDAM, COSTA, Lourenço. *Autodesk® Autocad 2016:* utilizando totalmente. São Paulo: Editora Érica, 2015.

# **Bibliografia Complementar:**

AUTOCAD 2000: passo a passo Lite. Pearson. E-BOOK. Disponível em: <a href="https://middleware-bv.am4.com.br/SSO/uecamp/9788534611701">https://middleware-bv.am4.com.br/SSO/uecamp/9788534611701</a>. Acesso em 19 abr. 2023.

CURSO PRÁTICO DE DESENHO TÉCNICO MECÂNICO. São Paulo, SP: Prismatica, [19-].

| Componente Curricular: CIRCL | IITOS ELÉTRICOS                |                      | Código: AI220      | 2º semestre |
|------------------------------|--------------------------------|----------------------|--------------------|-------------|
| Número de aulas semanais: 07 | Total de aulas semestrais: 140 | Semestre: 20 semanas | Tempo de aula: 45' |             |

# Ementa:

Estudos do comportamento dos circuitos elétricos com resistores, indutores e capacitores quando alimentados em corrente contínua e corrente alternada e do comportamento destes elementos de circuitos quando alimentados por uma tensão alternada trifásica.

# Bibliografia Básica:

BOYLESTAD, Robert L. Introdução à análise de circuitos. 12 ed. São Paulo: Pearson Prentice Hall, 2011.

# **Bibliografia Complementar:**

CAPUANO, Francisco G.; MARINO, Maria A. M. *Laboratório de eletricidade e eletrônica*: teoria e prática. 24. ed. São Paulo, Érica, 1997.

MARKUS, Otávio. *Circuitos elétricos:* corrente contínua e corrente alternada - teoria e exercícios. 9. Ed. São Paulo: Érica, 2009.

| Componente Curricular: <b>TÉCN</b> | Código: Al230                  | 2º semestre          |                    |  |
|------------------------------------|--------------------------------|----------------------|--------------------|--|
| Número de aulas semanais: 07       | Total de aulas semestrais: 140 | Semestre: 20 semanas | Tempo de aula: 45´ |  |

Estudo das estruturas de hardware de sistemas computacionais comerciais e industriais. Estudo da arquitetura de processadores e demais periféricos de um sistema computacional.

### Bibliografia Básica:

FLOYD, Thomas. Sistemas digitais: fundamentos e aplicações. 9. ed. Porto Alegre: Bookman, 2007.

GIMENEZ, Salvador P. Microcontroladores 8051: teoria e prática. São Paulo, Érica, 2010.

IDOETA, Ivan V.; CAPUANO, Francisco G. Elementos de eletrônica digital. 42. ed. São Paulo, Érica, 2018.

#### **Bibliografia Complementar:**

Apostilas fornecidas pelo professor.

Simuladores de sistemas Digitais. Simuladores de Microcontroladores.

| Componente Curricular: LINGUAG | Código: Al300                 | 3º semestre          |                  |     |
|--------------------------------|-------------------------------|----------------------|------------------|-----|
| Número de aulas semanais: 03   | Total de aulas semestrais: 60 | Semestre: 20 semanas | Tempo de aula: 4 | !5´ |

#### Ementa:

Estudo das linguagens de programação orientadas a objetos e suas aplicações em sistemas embarcados, inteligência artificial e Internet das Coisas. Desenvolvimento de atividades práticas.

# Bibliografia Básica:

ALVES, William P. *Programação Python:* aprenda de forma rápida. Rio de Janeiro: Expressa, 2021. E-book. p.1. Disponível em: <a href="https://app.minhabiblioteca.com.br/reader/books/9786558110149/">https://app.minhabiblioteca.com.br/reader/books/9786558110149/</a>. Acesso em: 21 mar. 2025.

FÉLIX, Rafael (org.). *Programação orientada a objetos.* São Paulo, SP: Pearson, 2016. *E-book*. Disponível em: <a href="https://plataforma.bvirtual.com.br">https://plataforma.bvirtual.com.br</a>. Acesso em: 21 mar. 2025.

SHAW, Zed A. *Aprenda Python 3 do Jeito Certo*. Rio de Janeiro: Editora Alta Books, 2019. E-book. p.1. Disponível em: <a href="https://app.minhabiblioteca.com.br/reader/books/9788550809205/">https://app.minhabiblioteca.com.br/reader/books/9788550809205/</a>>. Acesso em: 21 mar. 2025.

# **Bibliografia Complementar:**

ALVES, William P. *Linguagem e Lógica de Programação*. Rio de Janeiro: Érica, 2013. E-book. p.1. Disponível em: <a href="https://app.minhabiblioteca.com.br/reader/books/9788536519371/">https://app.minhabiblioteca.com.br/reader/books/9788536519371/</a>>. Acesso em: 21 mar. 2025.

DEITEL, Harvey M. *C++*: como programar. Coautoria de Paul J. Deitel. 5. ed. Pearson. E-BOOK. (1208 p.). Disponível em: <a href="https://middleware-bv.am4.com.br/SSO/uecamp/9788576050568">https://middleware-bv.am4.com.br/SSO/uecamp/9788576050568</a>>. Acesso em: 21 mar. 2025.

MANZANO, José Augusto N G. *Programação de Computadores com C/C++*. Rio de Janeiro: Érica, 2014. E-book. p.1. Disponível em: <a href="https://app.minhabiblioteca.com.br/reader/books/9788536519487/">https://app.minhabiblioteca.com.br/reader/books/9788536519487/</a>. Acesso em: 21 mar. 2025.

MELO, Ana Cristina Vieira de; SILVA, Flávio Soares Corrêa da. *Princípios de linguagem de programação*. São Paulo: Blucher, 2003. *E-book*. Disponível em: <a href="https://plataforma.bvirtual.com.br">https://plataforma.bvirtual.com.br</a>. Acesso em: 21 mar. 2025.

SEBESTA, Robert. *Conceitos de linguagens de programação*. 11. ed. Porto Alegre: Bookman, 2018. E-book. p.Capa. Disponível em: <a href="https://app.minhabiblioteca.com.br/reader/books/9788582604694/">https://app.minhabiblioteca.com.br/reader/books/9788582604694/</a>>. Acesso em: 21 mar. 2025.

| Componente Curricular: ELETRÔNICA INDUSTRIAL |                               | urricular: <b>ELETRÔNICA INDUSTRIAL</b> Código: Al310 3º s |                    | 3º semestre |
|----------------------------------------------|-------------------------------|------------------------------------------------------------|--------------------|-------------|
| Número de aulas semanais: 03                 | Total de aulas semestrais: 60 | Semestre: 20 semanas                                       | Tempo de aula: 45' |             |

Estudo dos amplificadores de pequenos sinais e potência, amplificadores operacionais e dispositivos da família dos tiristores e suas principais aplicações. Estudo dos reguladores transistorizados.

# Bibliografia Básica:

ALMEIDA, JOSÉ L. A. de. Dispositivos semicondutores: Tiristores. 13. ed. São Paulo: Érica, 2013.

MALVINO, Albert; BATES, David J. Eletrônica: v. 1. 8. ed. Porto Alegre: AMGH, 2016.

MALVINO, Albert; BATES, David J. Eletrônica: v. 2. 8. ed. Porto Alegre: AMGH, 2016.

# **Bibliografia Complementar:**

BOYLESTAD, Robert L.; NASCELSKY, Louis. *Dispositivos eletrônicos e teoria de circuitos*. 11. ed. São Paulo: Peason Universidades, 2013.

PERTENCE JUNIOR, Antônio. Amplificadores operacionais e filtros ativos. 8. ed. Porto Alegre: Bookman, 2014.

| Componente Curricular: INSTRUMENTAÇÃO INDUSTRIAL                                 |  |                   | Código: AI320 | 3º semestre |
|----------------------------------------------------------------------------------|--|-------------------|---------------|-------------|
| Número de aulas semanais: 05 Total de aulas semestrais: 100 Semestre: 20 semanas |  | Tempo de aula: 45 | ,             |             |

#### **Ementa:**

Introdução aos conceitos relacionados à instrumentação industrial no tocante à medição e controle das variáveis de processo.

# **Objetivos:**

Apresentar os requisitos e princípios de funcionamento básicos da instrumentação industrial e suas interfaces com as variáveis de processo.

# Bibliografia Básica:

Apostila própria com estrato de documentação Inmetro aplicável.

# **Bibliografia Complementar:**

ABNT NBR ISO 10012-1 — Requisitos para garantia da qualidade para equipamentos de medição; Gestão de equipamentos de medição.

FIALHO, Arivelto B. Instrumentação industrial: conceitos, aplicações e análises. 7. ed. São Paulo: Editora Érica, 2009.

| Componente Curricular: SISTEMAS DE AUTOMAÇÃO |                               |                      | Código: Al330      | 3º semestre |
|----------------------------------------------|-------------------------------|----------------------|--------------------|-------------|
| Número de aulas semanais: 03                 | Total de aulas semestrais: 60 | Semestre: 20 semanas | Tempo de aula: 45′ |             |

Conceitos fundamentais e histórico da automação industrial, abordando sua evolução até a Indústria 4.0. Estudo dos principais componentes de sistemas automatizados, incluindo sensores, atuadores e controladores e os principais diagramas lógicos e fluxos de processo.

# Bibliografia Básica:

BEGA, Egídio A. et al. Instrumentação Industrial. 3. ed. Rio de Janeiro: Editora Interciência, 2011.

GROOVER, Mikell P. Automação Industrial e Sistemas de Manufatura. 3. ed. São Paulo: Pearson, 2010.

OGATA, Katsuhiko. Engenharia de Controle Moderno. 5. ed. São Paulo: Pearson, 2010.

PRUDENTE, Francesco. Automação Industrial: PLC: Teoria e Aplicações. Rio de Janeiro: LTC., 2020.

SILVEIRA, P. R.; SANTOS, W. E. Automação e Controle Discreto. 9. ed. São Paulo: Érica, 2009.

# **Bibliografia Complementar:**

GEORGINI, Marcelo. *Automação aplicada: descrição e implementação de sistemas sequenciais com PLCs.* 9. ed. São Paulo: Érica, 2007.

LUGLI, Antonio B.; SANTOS, Marcelo M. D. *Redes industriais para automação industrial: ASI, PROFIBUS e PROFINET.* São Paulo: Érica, 2011.

MORAES, Carlos C.; CASTRUCCI, Paulo L. Engenharia de automação industrial. 2. ed. Rio de Janeiro: LTC, 2012.

NATALE, Ferdinando. Automação industrial. São Paulo: Érica, 2001.

| Componente Curricular: CONFIABILIDADE METROLÓGICA E QUALIDADE |                               | Código: AI340        | 3º semestre        |  |
|---------------------------------------------------------------|-------------------------------|----------------------|--------------------|--|
| Número de aulas semanais: 02                                  | Total de aulas semestrais: 40 | Semestre: 20 semanas | Tempo de aula: 45′ |  |

# Ementa:

Introdução aos conceitos de rastreabilidade metrológica de medições, planos de calibração e seus efeitos nas especificações do produto e do processo.

# Bibliografia Básica:

Apostila própria com estrato de documentação Inmetro aplicável.

# **Bibliografia Complementar:**

ABNT NBR ISO 10012-1 — Requisitos para garantia da qualidade para equipamentos de medição; Gestão de equipamentos de medição.

ABNT NBR ISO 9001:2015 - Sistemas de gestão da qualidade - requisitos

ABNT NBR ISO/IEC 17025:2017 — Requisitos Gerais para a competência de laboratórios de ensaio e calibração

PAU, L.F. Périodicité des Calibrations; Ecole Nationale Supérieure des Télécommunications, Paris, 1978.

| Componente Curricular: ACIONAMENTOS ELÉTRICOS |                               | Código: Al350        | 3º semestre        |  |
|-----------------------------------------------|-------------------------------|----------------------|--------------------|--|
| Número de aulas semanais: 04                  | Total de aulas semestrais: 80 | Semestre: 20 semanas | Tempo de aula: 45′ |  |

Estudo dos princípios fundamentais e as aplicações práticas dos sistemas de acionamento de máquinas elétricas, com foco na sua integração em processos automatizados.

# Bibliografia Básica:

KOSOW, Irving L. Máquinas elétricas e transformadores. 15. ed. São Paulo, SP: Globo, 2005.

STEPHAN, Richard M. *Acionamento, comando e controle de máquinas elétricas*. Rio de Janeiro, RJ: Ciência Moderna, 2013.

# **Bibliografia Complementar:**

FRANCHI, C. M. Acionamentos Elétricos. São Paulo: Pearson Education do Brasil, 2014.

NASAR, S. A. Maquinas elétricas. São Paulo, SP: McGraw-Hill, 1984.

WEG. Manual de Equipamentos Elétricos. 2. ed. Blumenau: WEG, 2014.

| Componente Curricular: TRABALHO DE CONCLUSÃO DE CURSO I |                               | Código: Al360        | 3º semestre        |  |
|---------------------------------------------------------|-------------------------------|----------------------|--------------------|--|
| Número de aulas semanais: 02                            | Total de aulas semestrais: 40 | Semestre: 20 semanas | Tempo de aula: 45' |  |

#### **Ementa:**

Desenvolvimento das etapas de elaboração do Projeto do Trabalho de Conclusão do Curso.

# Bibliografia Básica:

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. *Norma ABNT 14724*: elaboração do Trabalho de Conclusão de Curso. Rio de Janeiro, 2022.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. *Norma ABNT* 6023: elaboração de referências. Rio de Janeiro, 2022. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. *Norma ABNT 10520*: elaboração de citações em documentos. Rio de Janeiro, 2022.

# **Bibliografia Complementar:**

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. *Norma ABNT 2022*: como estruturar seu trabalho nas regras ABNT pré-textuais, textuais e pós-textuais. Rio de Janeiro, 2022.

| Componente Curricular: REDES INDUSTRIAIS E SISTEMAS SUPERVISÓRIOS |                              |                      | Código: AI400      | 4º semestre |
|-------------------------------------------------------------------|------------------------------|----------------------|--------------------|-------------|
| Número de aulas semanais: 03                                      | Total de aulas semestrais:60 | Semestre: 20 semanas | Tempo de aula: 45′ |             |

Estudo dos conceitos de comunicação de dados aplicados à automação industrial, abordando o modelo OSI/ISO, topologias de rede e meios físicos. Análise dos principais protocolos industriais, incluindo Modbus RTU, Modbus TCP, Ethernet/IP e Profinet IO. Desenvolvimento de aplicações em sistemas supervisórios SCADA, criação de interfaces gráficas, integração com bancos de dados e conceitos introdutórios de cibersegurança industrial.

# Bibliografia Básica:

COMER, Douglas E. *Interligação em rede com TCP/IP*: princípios, protocolos e arquitetura. v.2. Rio de Janeiro: Elsevier, 1998.

MORAES, Cícero C. de; CASTRUCCI, Plínio de L. *Engenharia de automação industrial*. Rio de Janeiro: LTC - Livros Técnicos e Científicos, 2001.

ROSÁRIO, João M. *Princípios de mecatrônica*. São Paulo: Pearson Prentice Hall, 2005.

# **Bibliografia Complementar:**

AGUILERA-FERNANDES, Edson. Protocolos de Redes. São Paulo: Editora Senai, 2020.

BAUNGART, José W. Redes de computadores: fundamentos e protocolos. São Paulo: Editora Senai, 2017.

KUROSE, James F.; ROSS, Keith W. Redes de Computadores e a Internet. Porto Alegre: Ed Bookman. 2021.

LUZ, Carlos E. S. Supervisórios em C#. Joinville: Ed. Clube de Autores, 2022.

RHODES, Brandon; GOERZEN, John. *Programação de Redes com Python:* guia abrangente de programação e gerenciamento de redes com Python. 3. ed. Santos: Novatec, 2015.

SOUSA, Lindenberg B de. Gerenciamento e segurança de redes. São Paulo: Editora Senai. 2017.

TANENBAUM, Andrew S.; FEAMSTER, Nick. Redes de computadores. 6. ed. Rio de Janeiro: Campus, 2021.

| Componente Curricular: CONTROLADORES LÓGICOS PROGRAMÁVEIS |                               |                      | Código: Al410      | 4º semestre |
|-----------------------------------------------------------|-------------------------------|----------------------|--------------------|-------------|
| Número de aulas semanais: 04                              | Total de aulas semestrais: 80 | Semestre: 20 semanas | Tempo de aula: 45' |             |

Fundamentos e as práticas avançadas no uso de Controladores Lógicos Programáveis (CLPs) em sistemas de automação industrial, incluindo arquitetura de hardware e seu funcionamento. Estudo das linguagens de programação para CLPs, envolvendo operações básicas e avançadas. Utilização das entradas e saídas digitais, analógicas e interfaces de rede.

#### Bibliografia Básica:

FRANCHI, Claiton M.; CAMARGO, Valter L. A. de. *Controladores Lógicos Programáveis*. 3. ed. Rio de Janeiro: Érica, 2020. E-book. p.1. Disponível em: <a href="https://app.minhabiblioteca.com.br/reader/books/9788536533605/">https://app.minhabiblioteca.com.br/reader/books/9788536533605/</a>>. Acesso em: 14 mai. 2025.

PETRUZELLA, Frank D. *Controladores lógicos programáveis*. 4. ed. Porto Alegre: ArtMed, 2014. E-book. p.1. Disponível em: <a href="https://app.minhabiblioteca.com.br/reader/books/9788580552836/">https://app.minhabiblioteca.com.br/reader/books/9788580552836/</a>>. Acesso em: 14 mai. 2025.

SILVA, Edilson A. da. *Introdução às linguagens de programação para CLP*. 1. ed. São Paulo, SP: Blucher, 2016. E-BOOK. Disponível em:< https://middleware-bv.am4.com.br/SSO/uecamp/9788521210528>. Acesso em: 14 mai. 2025.

# **Bibliografia Complementar:**

FRANCHI, Claiton Mo. Controladores lógicos programáveis: sistemas discretos. 2. ed. São Paulo, SP: Érica, 2009.

Manuais do CLP e software adotados no laboratório.

PRUDENTE, Francesco. *Automação industrial*. Rio de Janeiro, RJ: LTC, 2011. E-BOOK. Disponível em: <a href="https://app.minhabiblioteca.com.br/books/978-85-216-2023-5">https://app.minhabiblioteca.com.br/books/978-85-216-2023-5</a>. Acesso em: 14 mai. 2025.

| Componente Curricular: ROBÓTICA INDUSTRIAL |                               |                      | Código: AI420      | 4º semestre |
|--------------------------------------------|-------------------------------|----------------------|--------------------|-------------|
| Número de aulas semanais: 3                | Total de aulas semestrais: 60 | Semestre: 20 semanas | Tempo de aula: 45' |             |

### Ementa:

Estudo de conceitos e aplicabilidade da robótica industrial.

# Bibliografia Básica:

PAZOS, Fernando. Automação de sistemas & Robótica. Rio de Janeiro: Axcel Books, 2002.

ROSÁRIO, João M. Princípios de Mecatrônica. São Paulo: Pearson Education, 2005.

ROSÁRIO, João M. Robótica industrial I: modelagem, utilização e programação. São Paulo: Baraúna, 2010.

# **Bibliografia Complementar:**

SICILIANO, Bruno. et al. Robotics: Modelling, planning and control. London: Springer, 2010.

SPONG, Mark W.; HUTCHINSON, Seth; VIDYASAGAR, M. Robot modeling and control. USA: John Wiley & Son, 2006.

| Componente Curricular: SISTEMAS HIDRÁULICOS E PNEUMÁTICOS |                               | Código: Al430        | 4º semestre        |  |
|-----------------------------------------------------------|-------------------------------|----------------------|--------------------|--|
| Número de aulas semanais: 4                               | Total de aulas semestrais: 80 | Semestre: 20 semanas | Tempo de aula: 45' |  |

Estudo dos sistemas de automação pneumáticos e eletropneumáticos, hidráulicos eletro-hidráulicos, com respectivas simbologias e softwares de simulação de circuitos.

#### Bibliografia Básica:

FIALHO, Arivelto B. *Automação pneumática:* projetos, dimensionamento e análise de circuitos. 7. ed. São Paulo: Érica, 2011

PARKER TRAINING. *Tecnologia eletropneumática industrial*. Jacareí, 2005. Disponível em: <a href="https://www.parker.com/literature/Brazil/m">https://www.parker.com/literature/Brazil/m</a> 1002 2.pdf</a>>. Acesso em: 10 abr.2022.

PRUDENTE, Francesco. Automação industrial pneumática: teoria e aplicações. Rio de Janeiro: LTC, 2013.

# **Bibliografia Complementar:**

CROSER, Peter; EBEL, Frank. *Pneumática:* nível básico. Festo Didatic - Treinamento e Consultoria. Disponível em: <GPS://pt.scribd.com/doc/76237292/Pneumatica-basica-FESTO>. Acesso em: 08 abr. 2022.

HASEBRINK, J. P.; KOBLER, R. *Técnicas de comando*: fundamentos de Pneumática/Eletropneumática. FESTO 7300. Berkhein, 1975.

PARKER TRAINING. *Tecnologia ehidráulica industrial:* apostila M2001-4 BR. Jacareí, 2005. Disponível em: <a href="https://www.parker.com/literature/Brazil/Apres%20Hidrau%2027-04.pdf">https://www.parker.com/literature/Brazil/Apres%20Hidrau%2027-04.pdf</a> >. Acesso em: 10 abr.2022.

PARKER TRAINING. *Tecnologia pneumática industrial:* apostila M1001-3 BR. Jacareí, 2005. Disponível em: <a href="https://www.parker.com/literature/Brazil/apostila\_M1001\_1\_BR.pdf">https://www.parker.com/literature/Brazil/apostila\_M1001\_1\_BR.pdf</a> . Acesso em: 10 abr.2022.

| Componente Curricular: CONTROLE DE PROCESSOS INDUSTRIAIS |                               |                      | Código: Al440      | 4º semestre |
|----------------------------------------------------------|-------------------------------|----------------------|--------------------|-------------|
| Número de aulas semanais: 03                             | Total de aulas semestrais: 60 | Semestre: 20 semanas | Tempo de aula: 45′ |             |

Conceitos fundamentais e histórico da automação industrial, abordando sua evolução até a Indústria 4.0. Estudo dos principais componentes de sistemas automatizados, incluindo sensores, atuadores e controladores e os principais diagramas lógicos e fluxos de processo.

# Bibliografia Básica:

BEGA, Egídio A. et al. Instrumentação Industrial. 3. ed. Rio de Janeiro: Editora Interciência, 2011.

GROOVER, Mikell P. Automação Industrial e Sistemas de Manufatura. 3. ed. São Paulo: Pearson, 2010.

OGATA, Katsuhiko. Engenharia de Controle Moderno. 5. ed. São Paulo: Pearson, 2010.

PRUDENTE, Francesco. Automação Industrial: PLC: Teoria e Aplicações. Rio de Janeiro: LTC., 2020.

SILVEIRA, P. R.; SANTOS, W. E. Automação e Controle Discreto. 9. ed. São Paulo: Érica, 2009.

#### **Bibliografia Complementar:**

GEORGINI, Marcelo. *Automação aplicada: descrição e implementação de sistemas sequenciais com PLCs.* 9. ed. São Paulo: Érica, 2007.

LUGLI, Antonio B.; SANTOS, Marcelo M. D. *Redes industriais para automação industrial: ASI, PROFIBUS e PROFINET*. São Paulo: Érica, 2011.

MORAES, Carlos C.; CASTRUCCI, Paulo L. Engenharia de automação industrial. 2. ed. Rio de Janeiro: LTC, 2012.

NATALE, Ferdinando. Automação industrial. São Paulo: Érica, 2001.

| Componente Curricular: TRABALHO DE CONCLUSÃO DE CURSO II |                               |                      | Código: AI460      | 4º semestre |
|----------------------------------------------------------|-------------------------------|----------------------|--------------------|-------------|
| Número de aulas semanais: 02                             | Total de aulas semestrais: 40 | Semestre: 20 semanas | Tempo de aula: 45' |             |

# Ementa:

Elaboração do Trabalho de Conclusão de Curso e desenvolvimento de protótipos e conceitos.

# Bibliografia Básica:

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. *Norma ABNT 14724*: elaboração do Trabalho de Conclusão de Curso. Rio de Janeiro, 2022.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Norma ABNT 6023: elaboração de referências. Rio de Janeiro, 2022.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. *Norma ABNT 10520*: elaboração de citações em documentos. Rio de Janeiro, 2022.

# **Bibliografia Complementar:**

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. *Norma ABNT 2022*: como estruturar seu trabalho nas regras ABNT pré-textuais, textuais e pós-textuais. Rio de Janeiro, 2022.