

COLÉGIO TÉCNICO DE CAMPINAS Universidade Estadual de Campinas

CATÁLOGO DOS CURSOS TÉCNICOS - COTUCA UNICAMP 2026

Curso 48 - Mecatrônica

Curso Técnico em Mecatrônica concomitância externa (Presencial)

Eixo Tecnológico: Controle e Processos Industriais

Turno: Noturno

O Profissional:

O Técnico em Mecatrônica executa tarefas de caráter técnico referentes ao projeto, produção e aperfeiçoamento de instalações, máquinas, aparelhos e outros equipamentos mecânicos, orientando-se por desenhos, esquemas, softwares, normas e especificações utilizando instrumentos métodos adequados, e para desenvolvimento, fabricação, instalação, montagem, manutenção e reparo dos referidos equipamentos. Aplica conceitos da mecânica clássica, controle de sistemas automatizados de manufatura, automação industrial, instrumentação, controle de processos e comandos mecânicos, eletrônicos, pneumáticos, hidráulicos ou híbridos, assim como ferramentas da informática para as programações. Elabora projetos assistidos por computador e utiliza os princípios da qualidade e gestão de processos para a sua eficácia. Atua no setor industrial e de serviços, na interface integradora dos sistemas produtivos com os sistemas de controle computacional de suporte e apoio ao ambiente de manufatura, principalmente nas áreas de projetos, monitoramento e controle dos processos produtivos. Participa da elaboração de projetos de máquinas automatizadas, componentes e dispositivos mecânicos utilizando técnicas da mecatrônica; efetua o monitoramento e controle de sistemas de manufatura automatizados; atua junto a sistemas automatizados de produção, que envolvem aspectos operacionais e de programação de máquinas, assim como em centros complexos de manufaturas (CNC), robôs e manipuladores industriais, sistemas servocontrolados (CLP, IHM e outros), sistemas CAD/CAM, sistemas automatizados de medição e controle e outras atividades além da integração com as necessidades da Indústria 4.0.

<u>Integralização</u>:

Para forma-se como Técnico neste curso, o aluno deverá concluir as 1.395 horas de disciplinas do currículo, que poderão ser integralizadas em 2 anos, conforme a proposta do Projeto Pedagógico do Curso para o cumprimento do currículo pleno, além de 300 horas de Estágio não obrigatório. O prazo máximo de integralização é de 3 anos.

<u>Currículo</u>:

				Aulas s	emanais	Aulas	anuais	Total Horas
	Séries	Componente Curricular	Código	1º ano	2º ano	1º ano	2º ano	(60′)
		Algoritmos e Programação	MC110	3		120		90
		Desenho Técnico e Projetos de Máquinas	MC111	3		120		90
		Eletricidade Aplicada	MC112	2		80		60
		Mecânica e Resistência dos Materiais	MC113	3		120		90
	4.3	Tecnologia Mecânica e dos Materiais	MC114	3		120		90
	1ª	Elementos de Máquinas e Sistemas Mecânicos	MC210	2		80		60
		Comandos Elétricos	MC211	2		80		60
<u>a</u>		Eletrônica Aplicada	MC212	2		80		60
sion		Inglês Instrumental	IN001	2		80		60
Formação Técnica Profissional		Fabricação Mecânica e Metrologia Aplicada (S)	MC115	4		80		60
		Automação Hidráulica e Pneumática	MC213		2		80	60
čnic		Instrumentação e Controle	MC214		2		80	60
o Té		Controle e Automação Industrial 4.0	MC215		3		120	90
açã		Hidráulica e Pneumática Aplicada (S)	MC216		2		40	30
orm		Redes Industriais (S)	MC217		2		40	30
ъ.		Projetos em Automação	MC310		3		120	90
	2ª	Indústria 4.0 (Robótica e IoT)	MC311		3		120	90
		Gestão da Qualidade e Administração da Produção	MC312		2		80	60
		Tecnologia e Sustentabilidade	MC313		1		40	30
		Trabalho de Conclusão de Curso	MC314		2		80	60
		Robótica e IoT Aplicada (S)	MC315		1		20	15
		Fabricação Mecânica CNC (S)	MC316		2		40	30
		Células Flexíveis de Automação FMS (S)	MC317		2		40	30
		Total de Aulas e Car	26	27	960	900	1.395	
	Estágio	Supervisionado: 300 opcional		Total do	Curso: 1.6	595 horas	ı	1

Disciplinas:

Componente Curricular: Ingl	Código: IN010	
Pré-requisitos: nenhum	Curso: 48	Período no curso: 1º ano.
Número aulas semanais: 2	Total aulas anuais: 40	Tempo de aula: 45'

Ementa:

Revisão dos princípios da língua inglesa: composição e gramática. Uso do Inglês como instrumento no suporte às atividades relativas à formação técnica.

Bibliografia Básica:

PRESCHER, E.; PASQUALIN, E.; AMOS, E. New Graded English – volumes 1 e 2. São Paulo: Ed. Moderna, 1997.

SWAN, M.; WALTER, C. The GoodGrammar Book. Oxford: Oxford University Press, 2001.

TORRES, N. Gramática "O Inglês Descomplicado". 10 ed. Rio de Janeiro: Saraiva, 2007.

Bibliografia Complementar:

KLEIMAN, Â. Texto e leitor: aspectos cognitivos da leitura. 11. ed. Campinas, SP: Pontes, 2008.

MARCUSCHI, L. A. Produção textual, análise de gêneros e compreensão. São Paulo: Parábola Editorial, 2008.

MURPHY, R. English Grammar in Use. Cambridge: Cambridge University Press, 2000.

Componente Curricular: Algorit	Código: MC110			
Pré-requisitos: nenhum		Curso: 48		Período no curso: 1º ano.
Número aulas semanais: 3 Total a		ulas anuais: 120	Ano: 40 semanas	Tempo de aula: 45'

Ementa:

Introdução aos elementos de algoritmos e programação e seus principais conceitos e ferramentas com aplicações no desenvolvimento de projetos mecatrônicos.

Bibliografia Básica:

MEDINA, M.; FERTIG, C. Algoritmos e programação: teoria e prática. 2.ed. São Paulo, SP: Novatec, 2006.

PIVA JUNIOR, D. *Algoritmos e programação de computadores*. 2. ed. Rio de Janeiro, RJ : Livros Técnicos e Científicos, 2019.

SANTOS, M. G. Algoritmos e programação. Porto Alegre, RS: Sagah, 2018.

Bibliografia Complementar:

FRIZZARIN, F. B. Arduino: guia para colocar suas ideias em prática. São Paulo, SP: Casa do Código, 2019.

SALIBA, W. L. C. Técnicas de programação: uma abordagem estruturada. São Paulo, SP: Pearson/Makron, 2005.

SOFFNER, R. Algoritmos e programação em linguagem C. São Paulo, SP: Saraiva, 2013.

SOUZA, M. A. et al. Algoritmos e lógica da programação. São Paulo: Ed. Cengage Learning, 2019.

TERADA, R. Desenvolvimento de algoritmos e estruturas de dados. Rio de Janeiro, RJ: McGraw-Hill, 1991.

Componente Curricular: Desent	Código: MC111			
Pré-requisitos: nenhum		Curso: 48		Período no curso: 1º ano.
Número aulas semanais: 3 Total a		ulas anuais: 120	Ano: 40 semanas	Tempo de aula: 45'

Fundamentos do desenho técnico – vistas, projeções, perspectivas, dimensões e tolerâncias como ferramenta para Projetos de Engenharia; Softwares para desenho auxiliado por computador.

Bibliografia Básica:

LEAKE, M. J.; BORGERSON, L. J. *Manual de desenho técnico para Engenharia*: desenho, modelagem e visualização. 2. ed. Rio de Janeiro: LTC, 2015.

RIBEIRO, C. A.; PERES, P. M.; IZIDORO, N. Curso de Desenho Técnico e AutoCAD. São Paulo: Pearson, 2013.

Bibliografia Complementar:

FRENCH, T. E.; VIERCK, C.J. Desenho Técnico e Tecnologia Gráfica. Rio de Janeiro: Globo, 2015.

Componente Curricular: Eletrici	Código: MC112			
Pré-requisitos: nenhum		Curso: 48		Período no curso: 1º ano.
Número aulas semanais: 2 Total a		ulas anuais: 80	Ano: 40 semanas	Tempo de aula: 45'

Ementa:

Conceitos básicos de eletricidade, suas leis fundamentais e análise de circuitos.

Bibliografia Básica:

BOYLESTAD, R. L. Análise de circuitos. 12. ed. São Paulo: Ed. Pearson, 2012.

OTÁVIO, M. Circuitos elétricos: corrente contínua e corrente alternada. 9. ed. São Paulo: Ed. Erica, 2009.

Bibliografia Complementar:

ALBUQUERQUE, R. O. Análise de circuitos em corrente contínua. 9. ed. São Paulo: Ed. Erica, 1995.

ORSINI, L. de Q.; CONSONNI, D. Curso de circuitos elétricos. 2.ed. São Paulo: Ed. Blucher, 2010.

TOOLEY, M. Circuitos elétricos: fundamentos e aplicações. Rio de Janeiro: Ed. Campus, 2007.

Componente Curricular: Mecân	Código: MC113			
Pré-requisitos: nenhum		Curso: 48		Período no curso: 1º ano.
Número aulas semanais: 3 Total a		ulas anuais: 120	Ano: 40 semanas	Tempo de aula: 45'

Ementa:

Estudo de Sistema de Forças e Momentos visando o cálculo tanto de suas resultantes quanto o equilíbrio de partícula e de um corpo rígido. Propriedades geométricas de uma superfície plana. MCU - relações entre torque - potência e frequência. Estudo dos impactos que cargas externas (forças, momentos) causam em uma estrutura, como deformações e tensões normais e de cisalhamento. Projetos de eixos de transmissão.

Bibliografia Básica:

BEER, F. P; JOHNSTON JUNIOR; E. R.; EISENBERG, E. B. Estática e Mecânica dos Materiais. São Paulo: Mc Graw Hill, 2013.

BEER, F. P.; JONSTON JUNIOR, E. R.; EISENBERG, E. B. *Mecânica dos Materiais* . 5. ed. São Paulo: Edição Mc Graw Hill, 2011.

GERE, J. M.; GOODNO, B. J. Mecânica dos materiais. 7. ed. São Paulo: CENGAGE Learning, 2009.

HIBBELER, R. C. Mecânica Estática. 10 ed. São Paulo: Pearson Education do Brasil, 2005.

Bibliografia Complementar:

HIBBELER, R. C. Resistência dos Materiais. 7. ed. São Paulo: Pearson Education do Brasil, 2010.

Componente Curricular: Tecnol	Código: MC114			
Pré-requisitos: nenhum		Curso: 48		Período no curso: 1º ano.
Número aulas semanais: 3 Total a		ulas anuais: 120	Ano: 40 semanas	Tempo de aula: 45'

Materiais utilizados na fabricação mecânica, suas estruturas, propriedades, ensaios e tratamentos.

Bibliografia Básica:

ASKELAND, D. R.; WENDELIN, J. W. Ciência e engenharia dos materiais. São Paulo: Cengage Learning, 2019.

CALLISTER JR, W. D. Ciência e engenharia de materiais: uma introdução. 9. ed. Rio de Janeiro: LTC, 2016.

CHIAVERINI, V. Tecnologia mecânica. 2. ed. São Paulo: McGraw-Hill, 1986.

LIRA, F. A. Metrologia na indústria. São Paulo: Editora Érica, 2001.

VAN VLACK, L. Princípios de ciência dos materiais. São Paulo: Edgard Blucher, 1970.

Bibliografia Complementar:

CETLIN, P. R.; HELMAN, H. Fundamentos da conformação mecânica dos metais. 2 ed. São Paulo, SP: Artliber, 2012.

PADILHA, A. F. Materiais de engenharia: microestrutura e propriedades. São Paulo: Hemus, 1997.

SANTOS, R. G. dos, Transformação de fases em materiais metálicos. Campinas-SP: Ed. Unicamp, 2006.

Componente Curricular: Fabri	Código: MC115			
Pré-requisitos: nenhum		Curso: 48		Período no curso: 1º ano.
Número aulas semanais: 4 Total		aulas anuais: 80	Ano: 40 semanas	Tempo de aula: 45'

Ementa:

Máquinas operatrizes e suas funcionalidades para construção de dispositivos mecânicos. Tratamentos térmicos para melhoria das propriedades dos materiais.

Bibliografia Básica:

SENAI. Serviço Nacional de Aprendizagem Industrial. *Apostila:* Manutenção Mecânica de Máquinas e Equipamentos Administração da Manutenção.

SENAI. Serviço Nacional de Aprendizagem Industrial. Apostila: Fabricação Mecânica - Tecnologia.

SENAI. Serviço Nacional de Aprendizagem Industrial. *Apostila:* FIC-Soldador ao Arco Elétrico - Tecnologia Aplicada a Desenho Aplicado à Soldagem.

SENAI. Serviço Nacional de Aprendizagem Industrial. *Apostila*: Mecânico de Manutenção - Técnicas de Intervenção na Manutenção 1.

Bibliografia Complementar:

SENAI. Serviço Nacional de Aprendizagem Industrial. Metrologia. São Paulo: SENAI-SP Editora, 2019.

SENAI. Serviço Nacional de Aprendizagem Industrial. *Leitura e interpretação de desenho técnico*.São Paulo: SENAI-SP Editora, 2014.

Componente Curricular: Elemer	Código: MC210			
Pré-requisitos: nenhum		Curso: 48		Período no curso: 1º ano.
Número aulas semanais: 2 Total a		ulas anuais: 80	Ano: 40 semanas	Tempo de aula: 45'

Introdução e fatores de projetos; Elementos de fixação; Elementos de transmissão; Elementos de apoio; Cabos de aço; Molas.

Bibliografia Básica:

BUDYNAS, R. G.. Elementos de máquinas de Shigley. 8. ed. São Paulo: Mc Graw Hill, 2011.

MOTT, R. L. Elementos de máquina: projetos mecânicos. 5. ed. São Paulo: Pearson, 2015.

NORTON, R. L. Projeto de Máquinas: uma Abordagem Integrada. 2.ed. Porto Alegre-RS: Bookman, 2004.

Bibliografia Complementar:

MELCONIAN, S. *Elementos de máquinas:* engrenagens, correias, rolamentos, chavetas, molas, cabos de aço, árvores. 11. ed. São Paulo: Erica, 2019.

Componente Curricular: Coman	Código: MC211			
Pré-requisitos: MC112		Curso: 48		Período no curso: 1º ano.
Número aulas semanais: 2 Total a		ulas anuais: 80	Ano: 40 semanas	Tempo de aula: 45'

Ementa:

Conceitos e utilização de circuito de corrente alternada na indústria e projeto de comandos elétricos.

Bibliografia Básica:

PETRUZELLA, F. D. Eletrotécnica I. Porto Alegre-RS: Editora Bookman, 2013.

PETRUZELLA, F. D. Eletrotécnica II. Porto Alegre-RS: Editora Bookman, 2013.

Bibliografia Complementar:

BIM, E. Máquinas elétricas e acionamento. 3. ed. Rio de Janeiro: Elsevier, 2014.

FERRAZ, M. S. A.; KAUFMANN, I. R. Eletromagnetismo. Porto Alegre: SAGAH, 2018.

MARKUS, O. Circuitos elétricos: corrente contínua e corrente alternada. 9. ed. São Paulo: Erica, 2009.

Componente Curricular: Eletrôn	Código: MC212			
Pré-requisitos: nenhum		Curso: 48		Período no curso: 1º ano.
Número aulas semanais: 2 Total a		ulas anuais: 80	Ano: 40 semanas	Tempo de aula: 45'

Ementa:

Dispositivos eletrônicos básicos e de potência, funcionamento, aplicações e estratégias de controle de potência elétrica.

Bibliografia Básica:

ALMEIDA, J. L. A. de. *Dispositivos semicondutores:* tiristores, controle de potência em CC e CA. 12. ed. São Paulo: Ed. Érica, 2009.

BOYLESTAD, R.; NASHELSKY, L. *Dispositivos eletrônicos e teoria de circuitos*. 11. ed. Rio de Janeiro: Prentice-Hall do Brasil, 2013.

CRUZ, E. C. A.; CHOUERI JÚNIOR, S. Eletrônica aplicada. 2. ed. São Paulo: Editora Érica, 2007.

Bibliografia Complementar:

AHMED, A. *Eletrônica de potência*. Rio de Janeiro: Prentice-Hall do Brasil, 2000.

BOYLESTAD, R. L. Introdução à análise de circuitos. 12. ed. São Paulo: Pearson, 2012.

LANDER, C. W. Eletrônica industrial: teoria e aplicações. São Paulo: Ed. McGraw-Hill, 1988.

Componente Curricular: Autom	Código: MC213			
Pré-requisitos: nenhum		Curso: 48		Período no curso: 2º ano.
Número aulas semanais: 2 Total a		ulas anuais: 80	Ano: 40 semanas	Tempo de aula: 45'

Automação de sistemas hidráulicos e pneumáticos com atuadores lineares de simples e dupla ação.

Bibliografia Básica:

FIALHO, A. B. *Automação pneumática:* projetos, dimensionamento e análise de circuitos. 7. ed. São Paulo, SP: Érica, 2011.

PRUDENTE, F. Automação industrial pneumática: teoria e aplicações. Rio de Janeiro, RJ: LTC, 2013.

Bibliografia Complementar:

MELCONIAN, S. Sistemas fluidomecânicos: hidráulica e pneumática. São Paulo, SP: Érica, 2014.

Componente Curricular: Instrumentação e Controle				Código: MC214
Pré-requisitos: nenhum	isitos: nenhum Curso: 48			Período no curso: 2º ano.
Número aulas semanais: 2	Total a	ulas anuais: 80	Ano: 40 Semanas	Tempo de aula: 45'

Ementa:

Princípios e fundamentos de sensores de diversos tipos (temperatura, umidade, pressão, vazão e ópticos, dentre outros), para projetos de automação e controle.

Bibliografia Básica:

FIALHO, A. B. Instrumentação industrial: conceitos, aplicações e análises. 6 ed. São Paulo: Érica, 2010.

THOMAZINI, D.; ALBUQUERQUE, P. U. B. Sensores industriais: fundamentos e aplicações. 7 ed. São Paulo: Érica, 2010.

Bibliografia Complementar:

PAVANI, S. A. Instrumentação básica. Santa Maria: e-Tec Brasil, 2011.

SOLE, A. C. Instrumentation industrial. 3 ed. Barcelona: Ed. Marcombo, 1985.

Componente Curricular: Contro	Código: MC215			
Pré-requisitos: nenhum Curso: 48			Período no curso: 2º ano.	
Número aulas semanais: 3	Total aulas anuais: 120		Ano: 40 semanas	Tempo de aula: 45'

Ementa:

Componentes digitais e seu funcionamento em um processo de automação e projetos de automação com controladores lógicos programáveis (CLP).

Bibliografia Básica:

FRANCHI, C. M.; CAMARGO, V. L. A. de. *Controladores lógicos programáveis sistemas discretos*. 2 ed. São Paulo: Érica, 2013.

LOURENÇO, A. C. de et al. Circuitos digitais. 2 ed. São Paulo: Érica, 2000.

NATALE, F. Automação industrial. 5 ed. São Paulo: Érica, 2003.

Bibliografia Complementar:

CAPUANO, F. G.; IDOETA, I. V. Elementos de eletrônica digital. 40. ed. São Paulo: Érica, 2008.

CLP - Controladores Lógicos Programáveis. *EEEP*. Disponível em: https://www.seduc.ce.gov.br/wp-content/uploads/sites/37/2012/06/eletrotecnica_controladores_logico_programaveis_clp.pdf . Acesso em: 29 jan. 2024.

GEORGINI, M. Automação aplicada: descrição e implementação de sistemas sequenciais. 2 ed. São Paulo: Érica, 2002.

MORAES, C. C; CASTRUCCI, P. de L. Engenharia de Automação Industrial. 2 ed. Rio de Janeiro: LTC, 2013.

SILVEIRA, P. R.; SANTOS, W. E. Automação e controle discreto. 2 ed. São Paulo: Érica, 2002.

Componente Curricular: Hidráulica e Pneumática Aplicada				Código: MC216
Pré-requisitos: nenhum	quisitos: nenhum Curso: 48			
Número aulas semanais: 2	Total	aulas anuais: 40	Ano: 40 semanas	Tempo de aula: 45'

Montagens de circuitos pneumáticos e eletropneumáticos; hidráulicos e eletrohidráulicos em bancadas práticas e com softwares de simulação.

Bibliografia Básica:

FESTO. Catálogo de Componentes Pneumáticos e Elétricos (pdf)

FESTO. Automação Pneumática. Festo Didactic - Pneumática (pdf)

FESTO. Manual de Operação e Exercícios_Pneumatica (pdf)

FESTO. Didactic - Hidráulica (pdf)

Bibliografia Complementar:

SENAI. Manuais Práticos de Montagens Hidráulicas e Pneumáticas.

Componente Curricular: Redes Industriais				Código: MC217
Pré-requisitos: nenhum Curso: 48			Período no curso: 2º ano.	
Número aulas semanais: 2	ais: 2 Total aulas anuais: 40		Ano: 40 semanas	Tempo de aula: 45'

Ementa:

Introdução à comunicação entre dispositivos via redes Industriais.

Bibliografia Básica:

ALBUQUERQUE, P. U. B. de. Redes industriais. São Paulo: Ensino Profissional, 2010.

GOMES, A. T. *Telecomunicações:* transmissão e recepção AM/FM. 16. ed. São Paulo: Erica, 2000.

LUGLI, A. B.; SANTOS, M. M. D. *Sistemas Fieldbus para automação industrial:* Devce NET, CANopen, SDS e Ethernet. São Paulo: Erica, 2010.

Bibliografia Complementar:

COMER, D. E. Redes de computadores e Internet. 2. ed. Porto Alegre: Bookman, 2001.

HELD, G. Comunicação de dados. 6. ed. Rio de Janeiro: Campus, 1999.

SILVA, L. A. P. da; CHIOZZOTTO, M. *TCP/IP*: tecnologia e implementação. São Paulo: Érica, 1999.

SOARES NETO, V.; SILVA, A. de P. BOSCATO JUNIOR, M. C. *Telecomunicações:* redes de alta velocidade; cabeamento estruturado. São Paulo: Érica, 1999.

VIEIRA, F. M. *Trabalhando em redes.* 2. ed. São Paulo: Erica, 2004.

Componente Curricular: Projetos em Automação				Código: MC310
Pré-requisitos: nenhum Curso: 48			Período no curso: 2º ano.	
Número aulas semanais: 3	Total a	ulas anuais: 120	Ano: 40 semanas	Tempo de aula: 45'

Fmenta:

Estudo dos fundamentos da automação, seu histórico e objetivos, com destaque aos principais métodos de modelagem de sistemas sequenciais e contínuos e as características da instrumentação (sensores) envolvida nesses sistemas. Aplicação de controladores lógico programáveis em automação e redes de comunicação industriais e sua conectividade no contexto da Indústria 4.0. Desenvolvimento de projeto de automação utilizando controlador lógico programação, sistema de supervisão e rede de comunicação.

Bibliografia Básica:

GROOVER, M. P. Automação industrial e sistemas de manufatura. 3. ed. São Paulo: Pearson, 2011.

MORAES, C. de; CASTRUCCI, P. L. Engenharia de automação industrial. 2. ed. Rio de Janeiro: LTC, 2006.

ROSÁRIO, J. M. Princípios de mecatrônica. São Paulo: Pearson Prentice Hall, 2009.

Bibliografia Complementar:

ALVES, J. L. Instrumentação, controle e automação de processos. 2. ed. Rio de Janeiro: LTC, 2010.

CAMARGO, V. L. de. Elementos de automação. São Paulo: Érica, 2014.

PRUDENTE, F. Automação industrial PLC - teoria e aplicações: curso básico. 2. ed. Rio de Janeiro: LTC, 2011.

SILVEIRA, P. da.; SANTOS, W. E. Automação e controle discreto. 9. ed. São Paulo: Érica, 2009.

TOCCI, R. J.; WIDMER, N. S. Sistemas digitais: princípios e aplicações. 10. ed. Rio de Janeiro: LTC, 2009.

Componente Curricular: Indústria 4.0 (Robótica e IoT)				Código: MC311
Pré-requisitos: nenhum		Curso: 48		Período no curso: 2º ano.
Número aulas semanais: 3	Total aulas anuais: 120		Ano: 40 semanas	Tempo de aula: 45'

Ementa:

Estudo e conceitos importantes da indústria 4.0 e seus domínios tecnológicos.

Bibliografia Básica:

ATZORI, L.; IERA, A.; MORABITO, G. The internet of things: a survey. *Computer Networks*, v. 54, n. 15, p. 2787-2805, 2010.

IDEALI, W. Conectividade em automação e IOT. Rio de Janeiro: Ed. Alta Books, 2021.

MANCINI, M. Internet das coisas: história, conceitos, aplicações e desafios. Revista Mundo PM. Jan./Fev., 2017.

PAZOS, F. Automação de sistemas & Robótica. Rio de Janeiro: Axcel Books, 2002.

ROSÁRIO, J. M. *Princípios de Mecatrônica*. São Paulo: Pearson Education, 2005.

Bibliografia Complementar:

HUTCHINSON, S.; VIDYASAGAR, M. Robot modeling and control. USA: John Wiley & Son, 2006.

OLIVEIRA, S. de. Internet das Coisas com ESP8266, Arduino e Raspberry Pi. São Paulo: Ed. Novatec, 2021.

OLIVEIRA NETO, A.; OLIVEIRA, Y. de. *Instalação residencial aplicada à IOT:* aprenda de forma descomplicada. Rio de Janeiro: Ed. Alta Books, 2021.

SENAI - Manuais de Laboratório Robótica.

SICILIANO, B. et al. Robotics: modelling, planning and control. London: Springer, 2010.

SPONG, M. W.; ROSÁRIO, J. M. Robótica industrial I: modelagem, utilização e programação. São Paulo: Baraúna, 2010.

Componente Curricular: Gestão da Qualidade e Administração da Produção				Código: MC312
Pré-requisitos: nenhum		Curso: 48		Período no curso: 2º ano.
Número aulas semanais: 2	Total aulas anuais: 80		Ano: 40 semanas	Tempo de aula: 45'

Principais características da gestão da produção, considerando recursos humanos, tecnológicos, de infraestrutura e a cronologia. Análise dos principais fatores e recursos relacionados à produção através de metodologias e da realização do planejamento das capacidades considerando tempo, recursos humanos, recursos tecnológicos, e materiais.

Bibliografia Básica:

BRANDON-JONES, A.; JOHNSTON, R. Administração da produção. 8. ed. Rio de Janeiro: Atlas, 2018.

SELEME, R. B. *Automação da produção:* uma abordagem gerencial. *InterSaberes*. Disponível em: https://middleware-bv.am4.com.br/SSO/uecamp/9788565704809>. Acesso em: 29 jan. 2024.

SEVERIANO FILHO, C. Produtividade & manufatura avançada. João Pessoa: Edições PPGEP, 1999.

Bibliografia Complementar:

AGOSTINHO, O. L. *Engenharia de fabricação mecânica*. Rio de Janeiro, RJ: GEN LTC, 2018. E-BOOK. Disponível em: https://integrada.minhabiblioteca.com.br/books/9788595153516>. Acesso em: 29 jan. 2024.

CHIAVENATO, I. Introdução à teoria geral da administração. 3. ed. São Paulo: Mcgraw-Hill do Brasil, 1983.

Componente Curricular: Tecnologia e Sustentabilidade				Código: MC313
Pré-requisitos: nenhum		Curso: 48		Período no curso: 2º ano.
Número aulas semanais: 1	Total aulas anuais: 40		Ano: 40 semanas	Tempo de aula: 45'

Ementa:

O ser humano e a natureza em suas diversas dimensões - sociais, ecológicos, econômicos, culturais, tecnológicos, dentre outros.

Bibliografia Básica:

São diversos temas e em geral as referências estão na web em instituições oficiais, como Ministério de Meio Ambiente, Ciência e Tecnologia, Cetesb, ONU, Agência Internacional de Energia, IPCC, dentre outros, variando para cada temática.

Bibliografia Complementar:

São diversos temas e em geral as referências estão na web em instituições oficiais, como Ministério de Meio Ambiente, Ciência e Tecnologia, Cetesb, ONU, Agência Internacional de Energia, IPCC, dentre outros, variando para cada temática.

Componente Curricular: Trabalho de Conclusão de Curso				Código: MC314
Pré-requisitos: nenhum Curso: 48			Período no curso: 2º ano.	
Número aulas semanais: 2	Total a	ulas anuais: 80	Ano: 40 semanas	Tempo de aula: 45'

Ementa:

Gerenciamento, acompanhamento do desenvolvimento e implementação de projetos e trabalhos científicos e/ou tecnológicos na área de engenharia mecânica, que são pré-requisitos para a obtenção do certificado de Técnico em Mecatrônica de nível Médio.

Bibliografia Básica:

CERVO, A. L.; BERVIAN, P. A. Metodologia científica. 5. ed. São Paulo, SP: Pearson Prentice Hall, 2005.

MARCONI, M. de A.; LAKATOS, E. M. *Metodologia do trabalho científico:* procedimentos básicos, pesquisa bibliográfica, projeto e relatório, publicações e trabalhos científicos. 7.ed. S. Paulo, SP: Atlas, 2013.

PINHEIRO, J. M. dos S. *Da iniciação científica ao TCC*: uma abordagem para os curso de tecnologia. Rio de Janeiro, RJ: Ciência Moderna, 2010.

Bibliografia Complementar:

SEVERINO, A. J. Metodologia do trabalho científico. 20. ed. São Paulo: Cortez, 2000.

Componente Curricular: Robó	Código: MC315			
Pré-requisitos: nenhum		Curso: 48		Período no curso: 2º ano.
Número aulas semanais: 1	Total	aulas anuais: 20	Ano: 40 semanas	Tempo de aula: 45'

Iniciação a elaboração de projetos robóticos envolvendo: programação, modelagem, geração de trajetórias robóticas. Arquitetura em projetos de Internet das Coisas / Hardware em Sistemas de Internet das Coisas.

Bibliografia Básica:

AUTOMAÇÃO. Rio de janeiro: Fundação Roberto Marinho, 2009 (Novo Telecurso).

MILLER, R. Fundamentals of industrial robots and robotics. Boston: Pws-Kent Publishing Company,[200?].

ROMANO, V. F. *Robótica Industrial:* aplicação na Indústria de manufatura e de operações. São Paulo:

Edgard Blucher, 2002.

ROSÁRIO, J. M. Princípios de Mecatrônica. São Paulo: Pearson, 2005.

Bibliografia Complementar:

Acervo de Material didático SENAI.

Componente Curricular: Fabricação Mecânica CNC				Código: MC316
Pré-requisitos: nenhum	os: nenhum Curso: 48			Período no curso: 2º ano.
Número aulas semanais: 2	Tota	Total aulas anuais: 40 Ano: 40 sem		Tempo de aula: 45'
Emente: Programação em Máguinos a CNC utilizando linguagam ISO				

Ementa: Programação em Máquinas a CNC, utilizando linguagem ISO.

Bibliografia Básica:

SILVA, S. D. da. *CNC- Programação de Comandos Numéricos Computadorizados:* torneamento. 8. ed. São Paulo, Érica, 2008.

Bibliografia Complementar:

SENAI-SP. Apostila: Programação e Operação de Centro de Usinagem. FIC, 2016.

Componente Curricular: Células Flexíveis de Automação FMS				Código: MC317
Pré-requisitos: nenhum	Curso: 20		Período no curso: 2º ano.	
Número aulas semanais: 2	Total	aulas anuais: 40	Ano: 40 semanas	Tempo de aula: 45'
Ementa:				

_ _

Montagem de Sistemas integrados automatizados controlados por IHMs, CLPs, Robôs e Sistemas CNC.

Bibliografia Básica:

MILNITZ, D.; BERTOLDI, J. H. *Manufatura celular e sistemas flexíveis*. Indaial: UNIASSELVI, 2019.

Bibliografia Complementar:

Manual SENAI